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Abstract

We derive quantitative criteria for the existence of density for stochastic
line integrals and iterated line integrals along solutions of hypoelliptic differ-
ential equations driven by fractional Brownian motion. As an application,
we also study the signature uniqueness problem for these rough differential
equations.

1 Introduction and summary of main results
It is classical that there is a natural pairing between a C1-path γ : [0, T ]→ M in
a differentiable manifold M and a differential one-form φ on M , which is defined
by integration: ∫ T

0

φ(dγt) ,
∫ T

0

〈φ, γ̇t〉dt.

Here 〈·, ·〉 denotes the pairing between cotangent and tangent vectors. This no-
tion of integration, sometimes known as line integrals, has an intrinsic geometric
meaning in the sense that it does not rely on local coordinates or embeddings
of M into ambient Euclidean spaces. More generally, given a finite sequence of
one-forms (φ1, · · · , φm), one can consider an associated iterated line integral∫
0<t1<···<tm<T

φ1(dγt1) · · ·φm(dγtm) ,
∫ T

0

∫ tm

0

· · ·
∫ t2

0

〈φ1, γ̇t1〉 · · · 〈φm, γ̇tm〉dt1 · · · dtm.
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The definition of such integrals can be naturally extended to the rough path
context under suitable regularity conditions on the path γ and the one-forms
(cf. [LQ02, CDL15]). In the rough path literature, these iterated line integrals
are often referred to as extended signatures of γ (cf. [LQ12] for their use in the
context of Brownian motion).

A natural reason of considering line integrals is that they encode rich geomet-
ric/topological information about the original path γ. For instance, if γ = (xt, yt)
is a simple closed curve in R2, the line integral of γ against the one-form

φ ,
1

2
(xdy − ydx) (1.1)

gives the (signed) area enclosed by the path γ. The integral against the one-form

dθ ,
1

r2
(xdy − ydx)

on the punctured plane gives the winding number of γ around the origin. Other
topological properties associated with paths, e.g. turning number and linking
number, can also be defined in a similar way in terms of line integrals. In the
probabilistic context, one can considder distributional properties of stochastic line
integrals along stochastic processes such as diffusion paths. A well-known example
is Lévy’s formula for the characteristic function of the area process associated with
a planar Brownian motion, i.e. the stochastic line integral of Brownian motion
against the area one-form defined by (1.1) (cf. [Lev40]). Another famous example
is Spitzer’s asymptotic Cauchy law for the Brownian winding number (cf. [Spi58]).
Stochastic line integrals are also essential in the study of diffusions/martingales
on manifolds (cf. [Hsu02]).

A more fundamental reason of considering (iterated) line integrals is that the
original path γ is uniquely determined by these integrals when one varies the
degree n and the one-forms φ1, · · · , φn in a suitably rich class. Indeed, when
M = Rd, the collection of numbers (known as the signature of γ){∫

0<t1<···<tm<T
dγi1t1 · · · dγ

im
tm : m ∈ N, i1, · · · , im = 1, · · · , d

}
uniquely determines the path γ : [0, T ] → Rd up to tree-like pieces (cf. [Che58,
HL10, BGLY16]). In [Che73], the author used iterated line integrals against dif-
ferential forms to construct a de Rham cohomology theory on loop spaces over
manifolds and proved that such a theory is canonically isomorphic to the singular
cohomology theory in classical algebraic topology.
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In the probabilistic context, in the pioneering work of Le Jan and Qian [LQ12],
the authors developed an explicit method of recovering a generic Brownian tra-
jectory from the knowledge of its extended signatures. Their underlying idea
can be summarised as follows. Given an arbitrary bounded domain D in Rd, by
constructing a suitable one-form φ supported on D one can detect whether the
Brownian motion B has visited D from the knowledge of the line integral against
φ. More generally, given a discretisation of Rd into disjoint cubes with suitably
constructed one-forms supported inside each of them, one can detect the discrete
route of the motion from the knowledge of iterated line integrals against these
on-forms. By refining the space discretisation, one recovers the original trajectory
in the limit under this mechanism (cf. Section 4 below for more discussion).

In the method of [LQ12], an essential property of the required one-form φ is
that ∫ T

0

φ(dBt) 6= 0⇐⇒ B visits the D a.s.

where B is a Brownian motion in Rd. Such a property can be trivially implied by
a much stronger non-degeneracy property that the conditional law of

∫ T
0
φ(dBt)

given that B visits the domain D is absolutely continuous with respect to the
Lebesgue measure. This motivates the following general question which is the
main object of study in the present work.

We consider the following SDE on M (M = Rn or a compact differentiable
manifold): {

dXt =
∑d

α=1 Vα(Xt)dB
α
t , 0 6 t 6 T ;

X0 = x0 ∈M.
(1.2)

Here B = (B1, · · · , Bd) is assumed to be a d-dimensional fractional Brownian
motion with Hurst parameter H > 1/4. This falls into the rough path framework
under which the SDE is well-posed in the sense of rough paths. The vector
fields V1, · · · , Vd on M are assumed to be of class C∞b and satisfy the so-called
Hörmander’s condition (cf. Definition 3.5). This is a natural non-degeneracy
condition under which the solution Xt is known to have a smooth density function
with respect to the Lebesgue measure (cf. [CHLT15]). Throughout the rest, we
use C∞p to mean the class of functions/one-forms whose derivatives (of all orders)
have at most polynomial growth. This property ensures the Lp-integrability (for
all p > 1) of all relevant random variables under consideration.

Question. Let φ be a C∞p one-form onM . Can we identify an explicit quantitative
condition on φ, such that the conditional distribution of the stochastic line integral
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∫ T
0
φ(dXt), given that X visits the interior of the support of φ, admits a density

function with respect to the Lebesgue measure?

We first make a few comments. It is necessary to restrict on the event that
X visits (suppφ)◦, for otherwise the line integral is trivially zero. In addition,
suppose that M = Rn, suppφ 6= M and x0 ∈ (suppφ)◦. For the stochastic line
integral

∫ T
0
φ(dXt) to have a density function, it is necessary that φ is not closed.

Indeed, if dφ = 0, then φ = df for some smooth function f (every closed one-form
on Rn is exact). In this case, we have∫ T

0

φ(dXt) = f(XT )− f(x0).

This integral will have constant value on the non-trivial event {XT /∈ suppφ}. As
a result, the line integral cannot have a density function in this case.

As we will see, in the elliptic case, the non-closedness of φ is essentially suffi-
cient for the line integral to have a density.

Theorem 1.1. Suppose that the vector fields V1, · · · , Vd are elliptic. Let φ be a
C∞p one-form such that

dφ 6= 0 a.e. on suppφ.

Then the conditional distribution of
∫ T
0
φ(dXt), given that X visits (suppφ)◦, ad-

mits a density with respect to the Lebesgue measure.

The hypoelliptic case requires a stronger condition and more delicate analysis.
The general result is given by Theorem 3.9 below. Here we state the special
version in the step-two hypoelliptic case.

Theorem 1.2. Consider the case when M = R3 and d = 2. Suppose that the
vector fields V = {V1, V2, [V1, V2]} linear span TxM at every point x ∈ M . Let φ
be a C∞p one-form on M . Suppose that

d
(
φ+ dφ(V1, V2)ω

3
)
6= 0 a.e. on suppφ,

where {ω1, ω2, ω3} is the cotangent frame field dual to V. Then the conditional
distribution of

∫ T
0
φ(dXt), given that X visits (suppφ)◦, admits a density with

respect to the Lebesgue measure.

In Theorem 3.13 below, we also derive an explicit method of constructing one-
forms that satisfy the general non-degeneracy criterion given by Theorem 3.9. In
the above step-two hypoelliptic case, the method is summarised in the following
result. In this case, the class of one-forms that satisfy such a condition is as
generic as pairs of C∞p -functions.
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Proposition 1.3. Under the setting of Theorem 1.2, consider a one-form φ given
by

φ , c1ω
1 + c2ω

2 + (V1c2 − V2c1)ω3

where c1, c2 ∈ C∞p (M). Suppose that

dφ 6= 0 a.e. on suppφ. (1.3)

Then the conditional distribution of
∫ T
0
φ(dXt), given that X visits (suppφ)◦, ad-

mits a density with respect to the Lebesgue measure.

Our analysis can be extended to the case of iterated line integrals

F ,
∫
0<t1<···<tm<T

φ1(dXt1) · · ·φm(dXtm).

As we will see, if φ1, · · · , φm have disjoint supports, our general condition given by
(3.10) imposed on each φi continues to guarantee the conditional non-degeneracy
of F. On the other hand, if these one-forms have a common compact support,
when m > 2 it is indeed possible to have all the φi’s being exact while F is
non-degenerate. Recall what we explained earlier that this is not possible when
m = 1. Our results for iterated line integrals are discussed in Section 3.2 below.

Our study is motivated by the signature uniqueness problem in the spirit of
[LQ12]. As an application, in Section 4 we prove a signature uniqueness theorem
for the SDE (1.2) in the elliptic or step-two hypoelliptic case, which asserts that
with probability one the solution path t 7→ Xt is uniquely determined by its
signature transform up to reparametrisation. Under existing methodology, the
key ingredient is the explicit construction of compactly supported one-forms that
satisfy our non-degeneracy conditions. The main result for this part is stated in
Theorem 4.3 below.

Finally, we remark that our results hold for more general Gaussian driving
processes essentially without changing any part of the proofs. The required Gaus-
sian setting is precisely the one formulated in the work of [CHLT15] concerning
the smoothness of density for Gaussian rough differential equations. We formu-
late our results in the context of fractional Brownian motion simply to avoid the
non-rewarding effort of restating all the assumptions proposed in [CDL15].

Organisation. The present article is organised in the following way. In Section
2, we recall basic notions from rough path theory and some terminology from
differential geometry. In Section 3.1, we derive our quantitative criteria for the
non-degeneracy of single stochastic line integrals as well as an explicit method of
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construction. We begin with the elliptic case and then proceed to the hypoelliptic
case. The analysis is made more transparent in the step-two hypoelliptic case
after the general discussion. In Section 3.2, we extend our analysis to the case of
iterated line integrals. In Section 4, we discuss the application of our results to
the signature uniqueness problem for rough differential equations.

2 Preliminary notions from rough path theory and
differential geometry

In this section, we recall some basic tools and discuss the basic kind of pathwise
analysis that will be performed frequently in the sequel. We first give a notational
comment which will be applied throughout the rest of the article.

Notation. Above all, we will adopt Einstein’s convention of summation, i.e. dou-
bly repeated indices are summed automatically. We will also use matrix notation
exclusively. For instance, a vector field V = V i ∂

∂xi
on Rn is identified as an n× 1

column vector function. DV is the n× n matrix whose (i, j)-entry is ∂V i

∂xj
. A one-

form φ = φidx
i on Rn is identified as a 1×n row vector function. If f ∈ C∞(Rn),

df is the one-form defined by df , ∂f
∂xi
dxi. Given a smooth function f and vector

field V , we write V f , df · V = V i ∂f
∂xi

. The pairing between a one-form φ and
a vector field V is obviously φ · V , while on the other hand we write V φ as the
1 × n row vector defined by V φ , (V φ1, · · · , V φn). Note that DV and V φ are
local quantities that do not have intrinsic geometric meaning.

2.1 Pathwise differential calculus

Let {Xt : t > 0} be the solution to the SDE (1.2) where M = Rn for now,
Bt is a d-dimensional fBM with Hurst parameter H > 1/4 and the vector fields
V1, · · · , Vd ∈ C∞b . Here Bt is regarded as a geometric rough path and the SDE
is solved under the framework of rough path theory (cf. [LQ02]). Throughout
the rest, we will assume that Bt is realised on the canonical path space. More
specifically, the underlying probability space is (W ,B(W),P) where W is the
Banach space of Rd-valued continuous paths starting at the origin, B(W) is the
Borel σ-algebra overW and P is the law of the fBM. The process B is taken to be
the coordinate process onW . Under this set-up, solutions of differential equations
driven by B and stochastic line integrals along B are regarded as functionals over
W .
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The rough path nature of (1.2) allows us to justify and make use of pathwise
differential calculus in the ordinary manner. To illustrate this, we first recall the
following definition of the Cameron-Martin subspace (cf. [FH14]).

Definition 2.1. The Cameron-Martin subspace associated with fBM is the sub-
space H of paths h ∈ W that can be represented in the form

ht = E[ZBt], 0 6 t 6 T,

where Z is an element in the first Wiener chaos (i.e. the L2-closure of linear
functions on W under P). H is a Hilbert space with respect to the inner product

〈h1, h2〉H , E[Z1Z2],

where Zi is the chaos element associated with hi in its definition (i = 1, 2).

We use the following lemma to illustrate an example of the type of pathwise
calculation that will appear frequently later on. If F : W → R is a functional of
B and h ∈ H is a Cameron-Martin path, we write

DhF (w) ,
d

dε
|ε=0 F (w + εh)

as the derivative of F along direction h at the location w ∈ W . The Malliavin
derivative of F is the H-valued random variable defined by

DF , [h 7→ DhF ] ∈ H∗ ∼= H.

Lemma 2.2. Let φ = φidx
i be a C∞p one-form on Rn. Consider the stochastic

line integral

F ,
∫ T

0

φ(dXt).

Then

DhF (w) =

∫ T

0

(
(ζT (w)− ζt(w)) · Φ−1t (w) + φ(Xt(w))

)
· Vα(Xt(w))dhαt . (2.1)

Here Φt(w) , ∂Xt(w)
∂x0

denotes the Jacobian of the RDE (1.2) and

ζt(w) ,
∫ t

0

d(φiV
i
α)(Xs(w)) · Φs(w)dwαs . (2.2)
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Proof. To simplify notation we will omit the dependence on w. By the definition
of DhF (w), we have

DhF (w) =
d

dε
|ε=0

∫ T

0

φi(Xt(w + εh))dX i
t(w + εh)

=

∫ T

0

∂φi
∂xj

(Xt)DhX
j
t dX

i
t +

∫ 1

0

φi(Xt)dDhX
i
t .

By differentiating the SDE (1.2) along the direction h, it is seen thatDhXt satisfies
the differential equation

dDhX
i
t =

∂V i
α

∂xj
(Xt)DhX

j
t dw

α
t + V i

α(Xt)dh
α
t . (2.3)

As a result, we have

DhF (w) =

∫ T

0

∂φi
∂xj

(Xt)DhX
j
t V

i
α(Xt)dw

α
t

+

∫ T

0

φi(Xt)
(∂V i

α

∂xj
(Xt)DhX

j
t dw

α
t + V i

α(Xt)dh
α
t

)
=

∫ T

0

∂

∂xj
(φiV

i
α)(Xt)DhX

j
t dw

α
t +

∫ 1

0

φi(Xt)V
i
α(Xt)dh

α
t . (2.4)

On the other hand, the Jabocian Φt satisfies the homogeneous linear equation

dΦt = DVα(Xt)Φtdw
α
t , Φ0 = Id.

By the variational principle, it is standard that

DhXt = Φt

∫ t

0

Φ−1s Vα(Xs)dh
α
s . (2.5)

By using the formula (2.5) and integration by parts, the first integral in (2.4) can
be written as ∫ T

0

(
dζt ·

∫ t

0

Φ−1s Vα(Xs)dh
α
s

)
= ζT ·

∫ T

0

Φ−1s Vα(Xs)dh
α
s −

∫ T

0

ζtΦ
−1
t Vα(Xt)dh

α
t

=

∫ T

0

(ζT − ζt)Φ−1t Vα(Xt)dh
α
t ,

where ζt is the integral path defined by (2.2). The equation (2.1) thus follows.
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A technical remark. In the above proof, we have performed pathwise inte-
gration essentially using principles of ordinary calculus. This type of calcula-
tions can all be made rigorous under the framework of rough path theory (cf.
[CHLT15, Ina14, FH14] in which such type of calculation was used frequently and
justified carefully). For instance, the integral on the right hand side of (2.1) is
understood in the sense of Young, due to a variational embedding theorem for
the Cameron Martin space H proved by Friz-Victoir (cf. [FH14]). Another ex-
ample is that the path ζt can be understood in the sense of RDE, namely the last
component of the triple Ξt , (Xt,Φt, ζt) which is defined through the RDE

dXt = Vα(Xt)dB
α
t ,

dΦt = DVα(Xt)ΦtdB
α
t ,

dζt = d(φ · Vα)(Xt) · ΦtdB
α
t .

The assumption of φ ∈ C∞p ensures that the stochastic line integral F has moments
of all orders (indeed smooth in the sense of Malliavin), due to standard estimates of
rough integrals and the exponential integrability of the p-variation ofB (p > 1/H).
This is seen in exactly the same way as in [Ina14]. Throughout the rest, we will
perform pathwise differential calculus of similar kind without further justification.

The following theorem is a standard regularity result in the Malliavin calculus
which will be used in Section 3. Its proof can be found in [Nua06].

Theorem 2.3. Let F be a twice differentiable random variable on W (in the
sense of Malliavin) and F,DF,D2F ∈ Lp for some p > 1. Then conditional on
the event {DF 6= 0}, the distribution of F is absolutely continuous with respect to
the Lebesgue measure on R.

2.2 Some terminology from differential geometry

The notion of RDEs, stochastic line integrals as well as our non-degeneracy criteria
in Section 3 are intrinsic properties, in the sense that they are defined in terms of
the underlying vector fields and one-forms. In particular, they are independent of
the choice of local coordinates or embedding of the state manifold into an ambient
Euclidean space. It is thus beneficial to perform some of the analysis in geometric
terms. The benefit is particularly clear in the hypoelliptic analysis developed in
Section 3.1.2. In this section, we recall some notation from differential geometry
that will be used later on (cf. Chern-Chen-Lam [CCL00]).

Let M be a differentiable manifold. We denote Ωk(M) (0 6 k 6 n) as the
space of (smooth) k-forms on M . Given a (smooth) vector field X, the interior
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product i(X) : Ωk(M)→ Ωk−1(M) is defined by

(i(X)ω)(Y1, · · · , Yk−1) , ω(X, Y1, · · · , Yk−1). (2.6)

The Lie derivative LX : Ωk(M)→ Ωk(M) is defined by

(LXω)(Y1, · · · , Yk) , X(ω(Y1, · · · , Yk))−
k∑
i=1

ω(Y1, · · · , Yi−1, [X, Y ], Yi+1, · · · , Yk).

(2.7)
Here Y1, · · · , Yk−1 are arbitrary vector fields, a k-form is viewed as an antisym-
metric k-linear functional on vector fields and Xf is the directional derivative of f
along X. These two operators are related through the so-called Cartan’s identity :

d ◦ i(X) + i(X) ◦ d = LX , (2.8)

where d : Ωk(M) → Ωk+1(M) is the exterior derivative operator. We also recall
that the exterior product of two one-forms α, β is defined by

α ∧ β(X, Y ) = α(X)β(Y )− β(X)α(Y )

and the exterior derivative of one-form α has the following characterisation:

dα(X, Y ) = X(α(Y ))− Y (α(X))− α([X, Y ]), (2.9)

where X, Y are arbitrary vector fields. A one-form α is closed if dα = 0. It is
exact if α = df for some smooth function f. Every exact form is closed, and on
Rn the converse is also true. Throughout the rest, we will simply write α ·X for
the pairing α(X) which is also consistent with matrix notation in the Euclidean
case.

It is convenient to re-interpret Lemma 2.2 in geometric terms. For instance,
the Jacobian Φt : Tx0M → TXtM is the linear isomorphism that pushes tangent
vectors at x0 forward along the solution path by the flow of diffeomorphisms
associated with the RDE (1.2). The Malliavin derivative t 7→ DhXt ∈ TXtM is a
path on the tangent bundle (cf. (2.5)). The formula (2.1) can be expressed as

DhF (w) =

∫ T

0

( ∫ T

t

〈Φ∗sd(φ ·Vβ)(Xs),Φ
−1
t Vα(Xt)〉dwβs + (φ ·Vα)(Xt)

)
dhαt , (2.10)

where 〈·, ·〉 denotes the pairing between cotangent and tangent vectors at the
starting point x0. Equation (2.10) clearly has an intrinsic meaning.

Finally, we recall an equation for the pull-back of vector fields by the Jacobian.
This equation, which played an essential role in the proof of Hörmander’s theorem
for RDEs (cf. [CF10, CHLT15]), will also be crucial for our analysis. Its proof is
a straight forward application of the chain rule.
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Lemma 2.4. LetW be a smooth vector field onM . Then the path t 7→ Φ−1t W (Xt) ∈
Tx0M satisfies the equation

Φ−1t W (Xt) = W (x0) +

∫ t

0

Φ−1s [Vα,W ](Xs)dw
α
s .

3 Non-degeneracy criteria for stochastic line inte-
grals

In this section, we establish quantitative criteria for the non-degeneracy (i.e. ex-
istence of density) of stochastic/rough line integrals (extended signatures) of the
form ∫

0<t1<···<tm<T
φ1(dXt1) · · ·φm(dXtm),

where Xt ∈M is the solution to the RDE (1.2) and φ1, · · · , φm are C∞p one-forms.
Our results hold when M is either Rn or a (compact) manifold, but we will only
work with the case when M = Rn and the vector fields Vα ∈ C∞b . Extension of
the argument to the manifold case is routine by either working in local charts or
embedding M into an ambient Euclidean space. To illustrate the idea better, we
first consider the case when m = 1 and then extend the analysis to the case of
iterated integrals.

3.1 Single line integrals

We begin by considering a single line integral F ,
∫ T
0
φ(dXt). We divide the

discussion into two cases: elliptic and hypoelliptic. In the elliptic case, the re-
sult is particularly simple and neat, while the hypoelliptic case requires a strong
condition as well as more delicate analysis.

3.1.1 The elliptic case

By ellipticity, we assume that n = d and the vector fields V1, · · · , Vd in the RDE
(1.2) linearly span Rd at every point. In the introduction, we saw that the line
integral F may fail to have a density if the one-form φ is closed. In the elliptic case,
it turns out that non-closedness is essentially sufficient for the non-degeneracy of
F . The main result is stated as follows.
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Theorem 3.1. Let φ be a C∞p one-form on Rd. Suppose that dφ 6= 0 for almost
everywhere inside the support of φ. Let E denote the event that “Xt enters the
interior of suppφ at some time t”. Then conditional on E, the line integral F has
a density with respect to the Lebesgue measure.

Our proof of Theorem 3.1, as well as its hypoelliptic counterpart, relies cru-
cially on the following two properties of fBM. Its proof is contained in [CHLT15].

Lemma 3.2. (i) Let f = (f1, · · · , fd) : [0, T ] → Rd be a deterministic path
such that

∫ T
0
ftdht is well-defined in the sense of Young for all h ∈ H. If∫ T

0
fα(t)dhαt = 0 for all h ∈ H, then f ≡ 0.

(ii) The fBM is a.s. truly rough in the sense of [FH14]. As a result, with proba-
bility one we have ∫ t

0

ysdBs = 0 ∀t ∈ [0, T ] =⇒ y ≡ 0,

whenever y is a rough path controlled by B so that the rough integral is well-defined.

Remark 3.3. In [CHLT15], these two properties are implied by a nondeterminism-
type condition which was used by the authors to establish the smoothness of
density for the RDE solution. It was proved in the same paper that fBM satisfies
their nondeterminism condition.

Proof of Theorem 3.1. According to Theorem 2.3, the point is to show that E ⊆
{DF 6= 0} modulo some P-null set N . First of all, let N1 ⊆ W be a null set such
that w admits a canonical rough path lifting and is truly rough (so that Lemma
3.2 (ii) holds) for all w ∈ N c

1 .
Now suppose that w ∈ E ∩N c

1 is a path such that DF (w) = 0. According to
Lemma 2.2 and Lemma 3.2 (i), we have(

(ζT − ζt) · Φ−1t + φ(Xt)
)
· Vα(Xt) = 0 ∀t ∈ [0, T ], α = 1, · · · d (3.1)

at the driving path w, where ζt is defined by (2.2) and Φt is the Jacobian of
the RDE. Since the vector fields are assumed to be elliptic, the matrix V ,
(V1, · · · , Vd) is invertible everywhere. After multiplying (3.1) by V (Xt)

−1Φt, we
obtain that

ζT − ζt + φ(Xt) · Φt = 0.

Recall from the equations for Xt and Φt that

d
(
φ(Xt) · Φt

)
=
( ∂φ
∂xi

V i
α

)
(Xt)Φt + (φ ·DVα)(Xt) · Φt

)
dwαt . (3.2)

12



In view of the definition of ζt and (3.2), Lemma 3.2 (ii) implies that(
− d(φiV

i
α) +

∂φ

∂xi
V i
α + φ ·DVα

)
(Xt) = 0 ∀t ∈ [0, T ], α = 1, · · · , d.

By taking the j-th component of this equation, it is seen that(∂φj
∂xi
− ∂φi
∂xj

)
(Xt)V

i
α(Xt) = 0 ∀t, α, j. (3.3)

By ellipticity, the equation (3.3) is equivalent to the property that (dφ)(Xt) = 0
for all t. Note that this property holds at the particular path w. To summarise,
we have shown that

w ∈ E ∩N c
1 , DF (w) = 0 =⇒ (dφ)(Xt(w)) = 0 ∀t ∈ [0, T ]. (3.4)

By continuity, this is particularly true for t ∈ Q ∩ [0, T ].
On the other hand, by the definition of E and continuity, there is a rational

time r such that Xr(w) ∈ (suppφ)◦. In addition, we know from [CF10] that the
law of Xr is absolutely continuous with respect to the Lebesgue measure. Since
Λ , {x ∈ (suppφ)◦ : (dφ)(x) = 0} is a Lebesgue null set by assumption, we have

P
(
Xr ∈ Λ

)
= 0, ∀r ∈ Q ∩ [0, T ].

In view of (3.4), by further excluding the P-null set

N2 ,
⋃

r∈Q∩[0,T ]

{Xr ∈ Λ},

we conclude that
w ∈ E\(N1 ∪N2) =⇒ DF (w) 6= 0.

The result thus follows from Theorem 2.3.

Examples that satisfy the assumptions of Theorem 3.1 are generic and easy to
construct.

Example 3.4. Let h(t) ∈ C∞c (R) be a function such that

h(t) > 0, t ∈ (−1, 1); h(t) = 0, t /∈ (−1, 1),

and h′(t) is everywhere nonzero in (−1, 1) except at t = 0. Define the following
one-form on R2:

φ = h(x)h(y)eh(y)
2

dx.
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Then φ is supported on [−1, 1]2 and

dφ = −h(x)h′(y)(1 + 2h(y)2)eh(y)
2

dx ∧ dy.

Inside its support, dφ = 0 precisely on the slice y = 0 which has zero Lebesgue
measure.

3.1.2 The hypoelliptic case

We now extend the previous analysis to the hypoelliptic case. We first give the
following key definition. Let V1, · · · , Vd be a family of smooth vector fields on a
differentiable manifold M .

Definition 3.5. We say that V1, · · · , Vd satisfy Hörmander’s condition if the
following family of vector fields

Vi, [Vi, Vj], [Vi, [Vj, Vk]], [Vi, [Vj, [Vk, Vl]]], · · · (i, j, k, l etc. = 1, · · · , d)

linearly span TxM at every x ∈M .

It is a well-known fact that under Hörmander’s condition, the solution Xt to
the RDE (1.2) admits a smooth density function with respect to the Lebesgue
measure (cf. [CF10, CHLT15]). In the diffusion case, this result was first estab-
lished in the seminal work of fHörmander [Hor67].

We now consider a stochastic line integral F =
∫ T
0
φ(dXt), where Xt is the

solution to the RDE (1.2) and V1, · · · , Vd are C∞b -vector fields on M = Rn that
satisfy Hörmander’s condition. We shall obtain a quantitative criterion for the
non-degeneracy of F and derive an explicit method of constructing one-forms that
satisfy such criterion.

A general criterion

In order to derive a non-degeneracy criterion for F , as in the elliptic case we start
by assuming that DF (w) = 0 at a given fBM path w. We aim at obtaining a
geometric constraint on φ which holds at paths w satisfying DF (w) = 0 (in the
elliptic case, the constraint is closedness: dφ = 0). Our non-degeneracy criterion
will simply be that “φ does not satisfy such a geometric constraint” (in the elliptic
case, dφ 6= 0 a.e. inside suppφ).

We begin by fixing the following notation. Given a word I = (i1, · · · , ik) over
the letters {1, · · · , d}, we set

VI , [Vi1 , [Vi2 , · · · , [Vik−1
, Vik ]]].

14



The set of finite words (respectively, of length k) is denoted as W (respectively,
Wk). The following lemma is crucial for us.

Lemma 3.6. We define {ψI : I ∈ W} inductively in the following way:

ψI , 0 for I ∈ W1,

and
ψI , dφ(Vi, VJ) + ViψJ for I = (i, J). (3.5)

Suppose that DF (w) = 0. Then at the path w, we have

(η · Φ−1 + φ) · VI + ψI = 0 ∀I ∈ W , (3.6)

where

ηt(w) ,
∫ T

t

d(φ · Vα)(Xs(w)) · Φs(w)dwαs .

Proof. We prove the claim by induction on the length of I. When I ∈ W1, this
is a restatement of (3.1), whose proof clearly does not rely on ellipticity. Suppose
that (3.6) is true for all words of length 6 k. By taking differential with I ∈ Wk,
we find that

dη · (Φ−1VI) + η · d(Φ−1 · VI) + Vi(φ · VI + ψI)dw
i
t = 0.

By the definition of η and Lemma 2.4, we have(
η · Φ−1[Vi, VI ]− VI(φ · Vi) + Vi(φ · VI) + ViψI

)
dwit = 0.

It follows from Lemma 3.2 (ii) that

η · Φ−1[Vi, VI ]− VI(φ · Vi) + Vi(φ · VI) + ViψI = 0 ∀i = 1, · · · , d.

In addition, note that

Vi(φ · VI)− VI(φ · Vi) = (Viφ)VI − (VIφ)Vi + φ · (DVI · Vi −DVi · VI)
= dφ(Vi, VI) + φ · [Vi, VI ].

Therefore, we obtain that

(η · Φ−1 + φ)[Vi, VI ] + dφ(Vi, VI) + ViψI = 0 ∀i.

According to the definition of ψI′ , the above relation is precisely the desired prop-
erty for the word I ′ = (i, I) (i = 1, · · · , d). This completes the induction step.
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We shall make use of properly chosen local frame fields (i.e. family of vector
fields that form a basis of TxRn at every point x) associated with Hörmander’s
condition. As a result, our condition on φ will be expressed locally in terms of
these frame fields. For each x ∈ Rn, according to Hörmander’s condition and
continuity, there exists a neighbourhood U of x together with subsets I1, · · · , Ir
of words (Ik ⊆ Wk), such that

{VI : I ∈ I1 ∪ · · · ∪ Ir}

form a local frame field of Rn on U . We may assume that suppφ is covered by
such local “charts”.

Now suppose that X(w) passes through a local chart U of suppφ on which a
local frame field

V = {VI : I ∈ I1 ∪ · · · ∪ Ir}
is chosen and fixed. Note that

|I1|+ · · ·+ |Ir| = n.

Let W be the Mat(n, n)-valued function on U defined by

W , (VI)I∈Ik,16k6r

and set
Θ , (ψI)I∈Ik,16k6r,

where ψI is defined by (3.5). Under the assumption DF (w) = 0, the relation (3.6)
can be written in matrix form as

(η · Φ−1 + φ) ·W + Θ = 0

Since W is invertible, we have

η + φ · Φ = Ξ · Φ (3.7)

where Ξ , −Θ ·W−1. Note that (3.7) holds at w for all times in

Lw , {t ∈ [0, 1] : Xt(w) ∈ U}.

Let {ωI} be the coframe field dual to V . As a one-form on U, we have

Ξ = −
r∑

k=2

∑
I∈Ik

ψIω
I on U , (3.8)
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Lemma 3.7. Let ω = ωidx
i be a one-form and V = V i∂i be a vector field. Then

the following two identities hold true:

(i) −d(ω · V ) + V ω + ω ·DV = i(V )dω;
(ii) V ω + ω ·DV = LV ω.

Proof. By the definition (2.7) of the Lie derivative, we have

(LV ω)(∂i) = V ωi − ω · [V, ∂i] = V j ∂ωi
∂xj

+ ωj
∂V j

∂xi

= (V ω + ω ·DV ) · ∂i.

This justifies the relation in (ii). The relation of (i) is a simple consequence of (ii)
and Cartan’s identity (2.8).

Lemma 3.8. Suppose that DF (w) = 0 and X(w) passes through the local chart
U . Then at the path w, we have

i(Vα)dφ = LVαΞ (3.9)

for all α = 1, · · · , d and t ∈ Lw.

Proof. By taking differential of the relation (3.7), we obtain that(
− d(φ · Vα) · Φ + (Vα · φ) · Φ + φ ·DVα · Φ

)
dwα =

(
(VαΞ) · Φ + Ξ ·DVα · Φ

)
dwα.

After cancelling Φ on both sides, Lemma 3.2 (ii) implies that

−d(φ · Vα) + Vαφ+ φ ·DVα = VαΞ + Ξ ·DVα ∀α = 1, · · · , d and t ∈ Lw.

The result follows immediately from Lemma 3.7.

Equivalently, Lemma 3.8 suggests that if the relation (3.9) does not hold on
U and if X(w) passes through U , then DF (w) 6= 0. As a consequence, along the
same lines of argument as in the elliptic case, we have proved the following result,
which is the main theorem in this section giving a quantitative non-degeneracy
criterion for the line integral F .

Theorem 3.9. Let φ be a C∞p one-form on Rn. Suppose that the support of φ
is covered by local charts U on which suitable local frame fields V are chosen and
fixed. For each U , define the local one-form ΞU on U by (3.8) with respect to the
coframe dual to V . Suppose that on each chart U, we have

i(Vα)dφ− LVαΞU 6= 0 a.e. on U ∩ suppφ (3.10)
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for some α = 1, · · · , d. Then conditional on the event that “X enters the support of
φ”, the stochastic line integral

∫ T
0
φ(dXt) has a density with respect to the Lebesgue

measure.

Remark 3.10. The condition (3.10) is stronger than the non-closedness condition
dφ 6= 0 a.e. obtained in the elliptic case. Indeed, it is obvious that

dφ = 0 =⇒ ΞU = 0 =⇒ i(Vα)dφ− LVαΞU = 0.

An explicit method of construction

The next basic question is whether there are rich examples of one-forms that
satisfy the non-degeneracy criteria derived in the previous sections. In the elliptic
case, the non-closedness condition is fairly easy to achieve. In the hypoelliptic
case, there is also a rich class of one-forms (at least as generic as pairs of smooth
functions) that satisfy the condition (3.10). In what follows, we discuss a general
and explicit method of constructing them.

We first recall some basic notation from sub-Riemannian geometry. Suppose
that {V1, · · · , Vd} are given smooth vector fields on a differentiable manifold M
which satisfy Hörmander’s condition. Define D1 to be the C∞(M)-module gen-
erated by {V1, · · · , Vd}. Equivalently, for each x ∈ M , D1(x) is the subspace of
Tx(M) defined by

D1(x) = Span{V1(x), · · · , Vd(x)}, x ∈M.

Inductively, define
Dk , Dk−1 + [D1,Dk−1], k > 2,

where [D1,Dk−1] denote the C∞(M)-module generated by {[X, Y ] : X ∈ D1, Y ∈
Dk−1}. Elements in Dk are linear combinations of {VI : |I| 6 k} with smooth
coefficients. According to Hörmander’s condition, at every x ∈ M there is a
smallest integer r(x) such that Dr(x)(x) = TxM . Observe that

{0} =: D0(x) ⊆ D1(x) ⊆ D2(x) ⊆ · · · ⊆ Dr(x)(x).

The list of integers

dimD1(x) < dimD2(x) < · · · < dimDr(x)(x)

is known as the growth vector of {V1, · · · , Vd} at x. A point x is a regular point if
the growth vector is constant near x. The set of regular points is open and dense
in M .

The following simple algebraic lemma allows us to choose preferable local frame
fields to work with.
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Lemma 3.11. Let x0 ∈ M be a regular point. There exists a neighbourhood U
of x0 and a collection of words (I1, · · · , Ir) (r , r(x0), Ik ⊆ Wk), such that the
following two properties hold true for each k = 1, · · · , r:
(i) Ik ⊆ I1 × Ik−1;
(ii) {VI : I ∈ I1 ∪ · · · ∪ Ik} is a local frame field of Dk on U .

Proof. We construct Ik by induction. First of all, let U0 be a neighbourhood of x0
on which the growth vector is constant. Choose I1 so that {Vi(x0) : i ∈ I1} form
a basis of D1(x0). By continuity, there exists U1 ⊆ U0 such that {Vi(x) : i ∈ I1}
are linearly independent for each x ∈ U1. Since dimD1 is constant on U1, we see
that {Vi : i ∈ I1} is a local frame field of D1 on U1.

Now suppose that a neighbourhood Uk and I(k) = I1 ∪ · · · ∪ Ik have been
obtained to satisfy the required properties. We claim that

Dk+1(x0) = Span
{
VI(x0), [Vi, VJ ](x0) : i ∈ I1, I ∈ I(k), J ∈ Ik

}
. (3.11)

Indeed, let W ∈ D1(Uk) and Z ∈ Dk(Uk). By the induction hypothesis, we can
write

W =
∑
i∈I1

fiVi, Z =
∑

J∈I1∪···∪Ik

gJVJ

where fi, gI ∈ C∞(Uk). It follows that

[W,Z] =
∑
i∈I1

∑
J∈I1∪···∪Ik

(
(fiVigJ)VJ − (gJVJfi)Vi + figJ [Vi, VJ ]

)
.

For J ∈ I(k−1), since [Vi, VJ ] ∈ Dk is a C∞(M)-linear combination of VI (I ∈ I(k))
on Uk, the claim (3.11) follows immediately. Note that {VI(x0)} : I ∈ I(k)} are
already linearly independent. As a result, we can choose a collection Ik+1 of (i, J)
with i ∈ I1, J ∈ Ik such that

{VI(x0), [Vi, VJ ](x0) : I ∈ I(k), (i, J) ∈ Ik+1}

form a basis of Dk+1(x0). By continuity and the constant dimensionality of Dk+1

on Uk, we see that {VI : I ∈ I(k+1)} is a local frame field of Dk+1 on some
Uk+1 ⊆ Uk. From the construction, it is also clear that Ik+1 ⊆ I1 × Ik.

Remark 3.12. We know from Property (i) that Ik 6= ∅ for all k.
We now derive a general method of constructing one-forms that satisfy Theo-

rem 3.9. Let (U ;V = {VI : I ∈ I1∪· · ·∪Ir}) be a chosen local frame field that satis-
fies the properties in Lemma 3.11. For I = (i, J), we denote 〈〈dφ, VI〉〉 , dφ(Vi, VJ).
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From the definition of ψI (cf. (3.5)) and Property (i) of Lemma 3.11, it is not
hard to see that

〈〈dφ, VI〉〉 = 0 ∀I ∈ I2 ∪ · · · ∪ Ir =⇒ Ξ = 0,

where Ξ is the one-form defined by (3.8) with respect to the local frame field V .
In addition, since Ξ · Vα = 0 for all α ∈ I1, we have

i(Vα)dφ− LVαΞ = i(Vα)d(φ− Ξ). (3.12)

As a result, a sufficient condition for (3.10) to hold on U is that:

(A) 〈〈dφ, VI〉〉 = 0 for all I ∈ I2 ∪ · · · ∪ Ir;
(B) i(Vα)dφ 6= 0 a.e. on U for some α ∈ I1.

We shall reduce the above two conditions to a more explicit set of relations
in terms of coefficients. To this end, let {ωI : I ∈ I(r) , I1 ∪ · · · ∪ Ir} be the
coframe dual to V and express φ on U as

φ =
∑
I∈I(r)

cIω
I ,

where cI ∈ C∞(U). Let us fix a total ordering ≺ on I(r) such that I ≺ J if
|I| < |J |. For I, J,K ∈ I(r), we set

ΛI
JK , dωI(VJ , VK) = VJ(ωI(VK))− VK(ωI(VJ))− ωI([VJ , VK ]) = −ωI([VJ , VK ]).

It follows that

dφ =
∑
I

(
dcI ∧ ωI +

∑
J≺K

cIΛ
I
JKdω

J ∧ dωK
)

=
∑
I

(∑
J

VJcIω
J ∧ ωI −

∑
J≺K

cIω
I([VJ , VK ])dωJ ∧ dωK

)
=
∑
I≺J

(VIcJ − VJcI −
∑
K

cKω
K([VI , VJ ]))ωI ∧ ωJ .

Let ci (i ∈ I1) be an arbitrary family of smooth functions on U . Given
I = (i, j) ∈ I2, since i, j ∈ I1, we have

〈〈dφ, VI〉〉 = ±(Vicj − Vjci −
∑
K

cKω
K(VI))) = ±(Vicj − Vjci − cI

)
.
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As a result, by setting

cI , Vicj − Vjci, I = (i, j) ∈ I2,

we conclude that 〈〈dφ, VI〉〉 = 0 for all I ∈ I2. Inductively on k, for I = (i, J) ∈ Ik
we set

cI , VicJ − VJci
where cJ has already been defined since J ∈ Ik−1. It then follows that

〈〈dφ, VI〉〉 = 0 ∀I ∈ I2 ∪ · · · ∪ Ir

on U . In particular, the aforementioned Condition (A) holds. For Condition (B),
note that

i(Vα)dφ =
∑
J :J 6=α

(VαcJ − VJcα −
∑
K

cKω
K([Vα, VJ ]))ωJ (3.13)

for each α ∈ I1. As a result, Condition (B) boils down to requiring that at least
one of the ωJ -coefficients in (3.13) is a.e. nonzero on U .

To summarise, we have obtained the following result which provides an explicit
method of constructing one-forms that satisfy the criterion (3.10).

Theorem 3.13. Let ci ∈ C∞c (U) (i ∈ I1) be given and define cI (I ∈ Ik) induc-
tively by

cI , VicJ − VJci, I = (i, J) ∈ Ik.

Suppose that for some α ∈ I1 and J ∈ Ir, we have

VαcJ − VJcα −
∑
K

cKω
K([Vα, VJ ]) 6= 0 a.e. on U. (3.14)

Then conditional on the event that “X enters the support of φ”, the stochastic line
integral

∫ T
0
φ(dXt) has a density with respect to the Lebesgue measure.

Remark 3.14. The left hand side of (3.14) is an expression involving up to the r-th
derivatives of ci (i ∈ I1). The property (3.14) is essentially generic for functions
ci ∈ C∞c (U) (i ∈ I1).
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The step-two case and the Heisenberg group

Let us consider the simplest hypoelliptic situation, i.e. when d = 2, dimM = 3
and the vector fields

V = {V1, V2, V3 , [V1, V2]}

form a basis of TxM at every point x ∈ M(i.e. a global frame field over M). In
this case, Theorems 3.9 and 3.13 are simplified substantially. Let {ω1, ω2, ω3} be
the coframe of V . The definition (3.8) of the one-form Ξ reads

Ξ = −dφ(V1, V2)ω
3.

According to the identity (3.12) and the anti-symmetry of d(φ− Ξ) as a bilinear
form on vector fields, the condition (3.10) in Theorem 3.9 is equivalent to that

d(φ+ dφ(V1, V2)ω
3) 6= 0 a.e. on suppφ.

In addition, Conditions (A) and (B) in the last section simply reads

dφ(V1, V2) = 0 and dφ 6= 0 a.e. on suppφ.

In terms of coefficients of φ with respect to {ω1, ω2, ω3}, we have the following
direct corollary of Theorem 3.13.

Corollary 3.15. Consider a one-form

φ = c1ω
1 + c2ω

2 + (V1c2 − V2c1)ω3, (3.15)

where c1, c2 ∈ C∞p (M) . Suppose that dφ 6= 0 a.e. inside the support of φ.
Then conditional on the event that “X enters suppφ”, the stochastic line integral∫ T
0
φ(dXt) has a density with respect to the Lebesgue measure.

We conclude with an explicit example: the Heisenberg group. More precisely,
we consider M = R3, where the vector fields V1, V2 are given by

V1 = ∂x − y∂z, V2 = ∂y + x∂z

respectively. In this case, the solution to the RDE (1.2) is explicitly given by the
original fBM B coupled with the associated Lévy area process

Xt =
(
Bx
t , B

y
t ,

∫ t

0

Bx
s dB

y
s −

∫ t

0

By
sdB

x
s

)
06t6T

.
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By explicit calculation, it is easily seen that [V1, V2] = 2∂z. In particular, V ,
{V1, V2, [V1, V2]} is a global frame field. Its coframe is found to be

ω1 = dx, ω2 = dy, ω3 =
y

2
dx− x

2
dy +

1

2
dz.

Let φ = ciω
i where ci ∈ C∞p (R3). Under Cartesian coordinates, we have

φ =
(
c1 +

yc3
2

)
dx+

(
c2 −

xc3
2

)
dy +

1

2
c3dz. (3.16)

Let us further assume that c1, c2 depend only on the x, y coordinates. Define

c3 , −V2c1 + V1c1 = −∂yc1 + ∂xc2,

so that dφ(V1, V2) = 0 as seen before. Note that c3 also depends only on x, y. We
obtain from (3.16) that{

dφ(∂x, ∂z) = 1
2
∂xc3 = 1

2

(
− ∂2xyc1 + ∂2xxc2

)
,

dφ(∂y, ∂z) = 1
2
∂yc3 = 1

2

(
− ∂2yyc1 + ∂2xyc2

)
.

(3.17)

As a consequence, as long as the functions (c1, c2) are chosen such that(
− ∂2xyc1 + ∂2xxc2

)
·
(
− ∂2yyc1 + ∂2xyc2

)
6= 0 a.e. in suppφ, (3.18)

the non-degeneracy of the line integral
∫ T
0
φ(dXt) holds. Since there are no a

priori constraints on c1, c2, the property (3.18) is apparently generic.

3.2 Iterated line integrals

We now turn to the stuy of an extended signature

F =

∫
0<t1<···<tm<T

φ1(dXt1) · · ·φm(dXtm) (m > 2).

We consider two typical situations: (i) the supports of the one-forms φ1, · · · , φm
are mutually disjoint, or (ii) they all have common support. As we will see, in the
first case the conditions provided by Theorem 3.9 (imposed on each φi) continue
to ensure the non-degeneracy of F . In the second case, we demonstrate that it is
possible to have all φi’s being exact while F is non-degenerate, which is surprising
in contrast to the case of m = 1.

We first prepare a lemma that will be used in both cases. It is a natural
extension of (3.1).
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Lemma 3.16. For k = 1, · · · ,m, we set

Gk
t ,

∫
0<t1<···<tk−1<t

φ1(dXt1) · · ·φk−1(dXtk−1
), (3.19)

Hk
t ,

∫
t<tk+1<···<tm<T

φk+1(dXtk+1
) · · ·φm(dXtm), (3.20)

where G1
t = Hm

t , 1. Suppose that DF (w) = 0. Then at the path w we have
m∑
k=1

( ∫ T

t

Gk
sH

k
s dζ

k
s · Φ−1t +Gk

tH
k
t φk(Xt)

)
· Vα(Xt) = 0 (3.21)

for all α = 1, · · · , d and t ∈ [0, T ], where

ζkt ,
∫ t

0

d(φk · Vα)(Xs)Φsdw
α
s . (3.22)

Proof. As in the proof of Lemma 2.2, given any h ∈ H we have

DhF (w) =
m∑
k=1

∫
0<t1<···<tk<···<tm<T

φ1(dXt1) · · ·Dhφk(dXtk) · · ·φm(dXtm)

=
m∑
k=1

( ∫
0<···<tk<···<T

· · · (dζktk · ηtk) · · ·

+

∫
0<···<tk<···<T

· · · (φk · Vα)(Xtk)dh
α
tk
· · ·
)

=
m∑
k=1

( ∫ T

0

Gk
tH

k
t (dζkt · ηt) +

∫ T

0

Gk
tH

k
t (φk · Vα)(Xt)dh

α
t

)
=: A1 + A2,

where ηt ,
∫ t
0

Φ−1s Vα(Xs)dh
α
s . The same integration by parts argument as in the

proof of Lemma 2.2 yields that

A1 =
m∑
k=1

∫ T

0

∫ T

t

Gk
sH

k
s dζ

k
s · Φ−1t Vα(Xt)dh

α
t .

As a consequence, we have

DhF (w) =
m∑
k=1

∫ T

0

( ∫ T

t

Gk
sH

k
s dζ

k
s · Φ−1t Vα(Xt) +Gk

tH
k
t (φk · Vα)(Xt)

)
dhαt .

Since DhF (w) = 0 for all h ∈ H, the result thus follows from Lemma 3.2 (i).
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3.2.1 The case of disjoint supports

Let φ1, · · · , φm be smooth one-forms such that suppφi ∩ suppφj = ∅ for all i 6= j.
Define E to be the event that “there exist times t1 < · · · < tm such that Xti ∈
(suppφi)

◦ for all i”. From the definition of F, it is not hard to see in a deterministic
way that the line integral F is identically zero on Ec. Our main result in this case
is stated as follows.

Theorem 3.17. Suppose that each φi satisfies the conditions in Theorem 3.9.
Then conditional on the event E, the extended signature F has a density with
respect to the Lebesgue measure.

The following lemma, which is an extension of Lemma 3.6, is needed for our
proof of Theorem 3.17.

Lemma 3.18. For each k = 1, · · · ,m, we define {ψk,I : I ∈ W} by ψk,I , 0 if
I ∈ W1 and

ψk,I , dφk(Vi, VJ) + Viψk,J

for I = (i, J). Suppose that DF (w) = 0. Then at the path w, we have

(ρt · Φ−1t +
m∑
k=1

Gk
tH

k
t φk) · VI +

m∑
k=1

Gk
tH

k
t ψk,I = 0 ∀I ∈ W , t ∈ [0, T ], (3.23)

where ρt ,
∑m

k=1

∫ T
t
Gk
sH

k
s dζ

k
s and Gk

t , H
k
t , ζ

k
t are defined by (3.19, 3.20, 3.22)

respectively.

Proof. We prove the claim by induction on the length of the word I. When
I ∈ W1, the claim reduces to the equation (3.21). Suppose that (3.23) is true for
all words of length 6 k. By differentiating (3.23) with I ∈ Wk, we have

dρ · (Φ−1VI) + ρ · d(Φ−1VI) +
∑
k

d(Gk
tH

k
t ) · (φk · VI + ψk,I)

+
∑
k

Gk
tH

k
t Vi(φk · VI + ψk,I)dw

i = 0.

Recall that

dρt = −
∑
k

Gk
tH

k
t d(φk · Vi) · Φtdw

i
t, d(Φ−1t VI) = Φ−1t · [Vi, VI ]dwit.
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As a result, we have

ρ · Φ−1[Vi, VI ] +
∑
k

Gk
tH

k
t

(
− VI(φk · Vi) + Vi(φk · VI) + Viψk,I

)
+
∑
k

Gk
tH

k+1
t φk ∧ φk+1(Vi, VI) +

∑
k

Gk
tH

k+1
t (ψk+1,Iφk − ψk,Iφk+1) · Vi = 0

(3.24)

for all i. Since suppφk ∩ suppφk+1 = ∅, it is readily seen that

φk ∧ φk+1 = 0, ψk+1,Iφk − ψk,Iφk+1 = 0.

In addition, note that

Vi(φk · VI)− VI(φk · Vi) = dφk(Vi, VI) + φk · [Vi, VI ].

The equation (3.24) thus reduces to(
ρ · Φ−1 +

∑
k

Gk
tH

k
t φk
)
· [Vi, VI ] +

∑
k

Gk
tH

k
t

(
dφk(Vi, VI) + Vi(ψk,I)

)
= 0.

By the definition of {ψk,I : I ∈ W}, the last expression is equivalent to that(
ρ · Φ−1 +

∑
k

Gk
tH

k
t φk
)
· VI′ +

∑
k

Gk
tH

k
t ψk,I′ = 0

where I ′ = (i, I). Since I ∈ Wk and i ∈ {1, · · · , d} are arbitrary, we conclude
that (3.23) is true for words of length k + 1.

We now prove Theorem 3.17 by induction on the degree of F .

Proof of Theorem 3.17. Consider the following slightly more general claim:

(Pm) Let φ1, · · · , φm be smooth one-forms with disjoint support and each of them
satisfies the conditions in Theorem 3.9. For each pair of s < t ∈ [0, T ], let Es,t be
the event that “X visits (suppφ1)

◦, · · · , (suppφm)◦ in order over [s, t]”. Then∫
s<t1<···<tm<t

φ1(dXt1) · · ·φm(dXtm)

∣∣∣∣
Es,t

admits a density with respect the Lebesgue measure.
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We are going to prove (Pm) by induction on m. The case when m = 1 is just
Theorem 3.9. Suppose that the claim is true for iterated integrals of degree less
than m and consider an m-th order integral

F =

∫
s<t1<···<tm<t

φ1(dXt1) · · ·φm(dXtm).

We wish to show that

w ∈ Es,t ∩N c =⇒ DF (w) 6= 0, (3.25)

where N is a suitable P-null set to be excluded.
Suppose that w ∈ Es,t and DF (w) = 0. Let k be fixed and consider a time u

such that Xu ∈ (suppφk)
◦ and X|[s,u] (respectively, X|[u,t]) visits the supports of

φ1, · · · , φk−1 (respectively, of φk+1, · · · , φm). Such a time u exists as w ∈ Es,t. By
the assumption of the theorem, we may take a chart U near Xu on which a local
frame field {VI : I ∈ I1 ∪ · · · ∪ Ir} is defined and

i(Vα)dφk − LVαΞk 6= 0 a.e. on U (3.26)

for some α, where under the notation of Section 3.1.2 we set

Ξk , ΘkW
−1, Θk , (ψk,I)I∈Il,16l6r,W , (VI)I∈Il,16l6r on U.

In a small time neighbourhood v ∈ (u− ε, u+ ε), the equation (3.23) yields

(ρ · Φ−1 +Gk
vH

k
vφk) ·W +Gk

vH
k
v ·Θk = 0 ⇐⇒ ρ+Gk

vH
k
vφk · Φ = Gk

vH
k
vΞk · Φ.

Note that the above relation holds at k (not summing over k!) near Xu. By
differentiating both sides with respect to wαt , we obtain that

Gk
vH

k
v

(
− d(φk · Vα) + Vαφk + φk ·DVα

)
+ d(Gk

vH
k
v )φk

= Gk
vH

k
v ·
(
VαΞk + Ξk ·DVα

)
+ d(Gk

vH
k
v )Ξk (3.27)

for all α and v ∈ (u− ε, u+ ε).
Next, we observe that

d(Gk
vH

k
v ) = Gk−1

v Hk
vφk−1(dXv)−Gk

vH
k+1
v φk+1(dXv) = 0,

since Xv ∈ suppφk for v close to u. As a result, the equation (3.27) reduces to

Gk
vH

k
v

(
− d(φk · Vα) + Vαφk + φk ·DVα

)
= Gk

vH
k
v ·
(
VαΞk + Ξk ·DVα

)
.
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By using the relations

−d(φk · Vα) + Vαφk + φk ·DVα = i(Vα)dφk,

VαΞk + Ξk ·DVα = LVαΞk,

we obtain that
Gk
vH

k
v

(
i(Vα)dφk − LVαΞk

)
= 0 (3.28)

for all α and v ∈ (u− ε, u+ ε). According to the assumption (3.26), we conclude
that either Xv lives on some Lebesgue null set C ⊆ U , or Gk

vH
k
v = 0.

For each v, we set

E ′v , {∃t1 < · · · < tk−1 ∈ (0, v) : Xti ∈ (suppφi)
◦},

E ′′v , {∃tk+1 < · · · < tm ∈ (0, v) : Xti ∈ (suppφi)
◦}

respectively. To summarise, by continuity we have obtained from (3.28) that

w ∈ Es,t ∩ {DF = 0}

=⇒ w ∈ N ,
⋃

r∈Q∩(s,t)

(
{Xr ∈ C} ∪ ({Gk

r = 0} ∩ E ′r) ∪ ({Hk
r = 0} ∩ E ′′r )

)
.

Since Xr has a density, we know that {Xr ∈ C} is a P-null set. In addition, since
Gk
r and Hk

r are iterated line integrals with degree less than m, by the induction
hypothesis both of Gk

r |E′r and Hk
r |E′′r have densities. In particular,

{Gk
r = 0} ∩ E ′r) ∪ ({Hk

r = 0} ∩ E ′′r )

is also a P-null set. As a result, P(N) = 0 and the desired relation (3.25) follows.
In other words, we conclude that DF 6= 0 a.s. on Es,t, which implies the existence
of conditional density by Theorem 2.3. This completes the induction step for the
claim (Pm).

3.2.2 The case of common support

Next, we assume that the supports of φ1, · · · , φm have a common intersection S.
Our aim here is to demonstrate a surprising fact that the extended signature F can
still be non-degenerate even when all the φi’s are exact and compactly supported
(i.e. φi = dfi where fi ∈ C∞c (S)). As we mentioned in the introduction, this is
not possible when m = 1 (cf. Remark 3.20 as well). Our result in this case is
stated as follows. We only consider the elliptic situation.
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Proposition 3.19. Consider an elliptic RDE (1.2) where X0 = x0 ∈ Rd. Let
f1, · · · , fm be compactly supported smooth functions. Suppose that the two-forms

df1 ∧ df2, · · · , dfm−1 ∧ dfm

are linearly independent at x0. Then the extended signature

F ,
∫
0<t1<···<tm<T

(df1)(dXt1) · · · (dfm)(dXtm)

has a density with respect to the Lebesgue measure.

Proof. Write φk , dfk. Let w be an fBM path such that DF (w) = 0. According
to the equation (3.21) and ellipticity, we have∑

k

∫ 1

t

Gk
sH

k
s dζ

k
s +

∑
k

Gk
tH

k
t φk · Φt = 0 ∀t ∈ [0, T ].

By taking differentiation with respect to wαt , we find that∑
k

Gk
tH

k
t

(
− d(φk · Vα) + Vα(φk) + φk ·DVα

)
+
∑
k

Gk
tH

k+1
t

(
(φk · Vα)φk+1 − (φk+1 · Vα)φk = 0,

which is equivalent to that

i(Vα)
∑
k

(
Gk
tH

k
t dφk +Gk

tH
k+1
t φk ∧ φk+1

)
= 0

for all α = 1, · · · , d and t ∈ [0, T ]. Again by ellipticity and the fact that dφk =
d2fk = 0, we have ∑

k

Gk
tH

k+1
t φk ∧ φk+1 = 0 (3.29)

for all t ∈ [0, T ] at the path w.
We first consider the case when m = 2. In this case, the relation (3.29) simply

reads
(φ1 ∧ φ2)(Xt(w)) = 0 ∀t ∈ [0, T ].

By taking t = 0, we reach a contradiction as φ1 ∧ φ2(x0) 6= 0 by the assumption.
Next, we consider the case when m = 3. In this case, the relation (3.29) becomes

H2
t φ1 ∧ φ2 +G2

tφ2 ∧ φ3 = 0.
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By the linear independence assumption and continuity, when t is small we have
H2
t = G2

t = 0. In particular,

G2
t =

∫ t

0

φ1(dXs) = f1(Xt)− f1(x0) = 0 ∀t small. (3.30)

On the other hand, since df1(x0) 6= 0 (otherwise the linear independence assump-
tion cannot hold), there exists a neighbourhood U of x0 such that

P , {x ∈ U : f1(x) = f1(x0)}

is an (n− 1)-dimensional submanifold in U . In particular, the event

N ,
⋃
r∈Q+

{Xr ∈ P}

is a P-null set. Note that the property (3.30) implies that N happens. Conse-
quently, in both cases m = 2, 3, we see that DF (w) 6= 0 a.s. The existence of
density thus follows.

Now suppose that the claim is true for iterated integrals of degree m−2 where
m > 4. . For the degree m case, by taking k = m− 1 in (3.29) we have

DF (w) = 0 =⇒ Gm−1
t =

∫
0<t1<···<tm−2<t

φ1(dXs) · · ·φm−2(dXs) = 0

when t is small. In particular,

{DF = 0} ⊆
⋃
r∈Q+

{Gm−1
r = 0},

which is a P-null set since Gm−1
r has a density by the induction hypothesis. There-

fore, DF 6= 0 a.s. and the claim holds for the degree-m case. The result thus
follows by induction.

Remark 3.20. In contrast, when m = 1, the stochastic line integral of a compactly
supported exact form will never have a density. Indeed, let f be a compactly
supported smooth function. Then

F ,
∫ T

0

(df)(dXt) = f(XT )− f(x0).
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According to [GOT21, Theorem 1.5], the density of XT is everywhere strictly
positive. It follows that

P(XT ∈ (suppf)c) > 0.

In particular, there is a positive probability that F = −f(x0). As a result, F
cannot have a density. Nonetheless, if we allow suppf = Rn it is clearly possible
that F has a density. For instance, take f(x) = |x|2 with Xt being a Brownian
motion.

4 An application: signature uniqueness for RDEs
In this section, we discuss an application of Theorem 3.13 to the probabilistic sig-
nature uniqueness problem. We first give the definition of the signature transform

of a rough path (cf. [LCL07]). Let T ((Rn)) ,
∞∏
m=0

(Rn)⊗m denote the algebra of

formal tensor series over Rn where (Rn)⊗0 , R.

Definition 4.1. Let X = (Xt)06t6T be a rough path over Rn. The signature of
X is the formal tensor series defined by

S(X) ,
(
1,

∫ T

0

dXt, · · · ,
∫
0<t1<···<tm<T

dXt1 ⊗ · · · ⊗ dXtm , · · ·
)
∈ T ((Rn)). (4.1)

Remark 4.2. If X is a continuous path in Rn with bounded variation, the iterated
integrals in (4.1) are all defined in the classical sense of Lebesgue-Stieltjes. In
the rough path case, the well-definedness of S(X) follows from a basic extension
theorem of Lyons (cf. [LQ02]).

After extracting coordinates, the signature S(X) consists of a countable family
of numbers associated with the path X. It can be viewed as the pathwise /
deterministic analogue of moments of a random variable. There are two basic
reasons of considering the signature transform:

(i) [The signature uniqueness theorem] Every (geometric) rough path is uniquely
determined by its signature up to tree-like pieces (cf. [HL10, BGLY16]). Here a
tree-like piece is a portion along which the path travels out and reverses back to
cancel itself.
(ii) The signature S(X) has nice algebraic and analytic properties that are con-
cealed at the level of paths (cf. [LCL07, Reu93]).
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In the probabilistic setting, the signature uniqueness theorem may take a
stronger form as we do not expect tree-like pieces to appear for a suitably non-
degenerate stochastic process. Below is the main result in this section which
extends earlier probabilistic works [LQ12, GQ16, BG15]. To reduce technicalities,
we only consider the elliptic or step-two hypoelliptic case.

Theorem 4.3. Consider an n-dimensional RDE (1.2) driven by a d-dimensional
fractional Brownian motion. Suppose that the vector fields {V1, · · · , Vd} are C∞b
and we are in one of the following two situations:

(i) n = d and the vector fields are elliptic;
(ii) n = 3, d = 2 and the vector fields satisfy Hörmander’s condition.

Then with probability one, every sample path of the solution process X = {Xt :
0 6 t 6 T} is uniquely determined by its signature up to reparametrisation.

Remark 4.4. We expect the result to be true for the general hypoelliptic case of
arbitrary order, although the construction of relevant one-forms (cf. Condition
(ND) below) may be technically more involved in the general case.

Such a probabilistic uniqueness theorem was first established by Le Jan and
Qian [LQ12] for the Brownian motion case. The result was later extended to
the cases of hypoelliptic diffusions in [GQ16] and Gaussian processes in [BG15].
These works were largely based on a technique developed in [LQ12], which was
formalised in [BG15] down to the verification of three key conditions in the context
of a general stochastic process X. The first two conditions are: (i) X can be lifted
as a rough path in a canonical way and (ii) Xt has a density for each t > 0. These
two conditions are naturally satisfied for hypoelliptic RDEs. The last condition
is stated as follows.

Non-degeneracy Condition (ND). For any cube H in Rn, there exists a smooth
one-form φ supported in H, such that conditional on the event that “X enters H
at some time”, the stochastic line integral

∫ T
0
φ(dXt) is a.s. non-zero.

It was proved in [BG15] that the above three conditions imply the signature
uniqueness theorem for a general stochastic process X. As a result, in order to
prove the aforementioned Theorem 4.3, it remains to verify Condition (ND) under
the given assumptions. Before doing so, for the sake of completeness, we briefly
recapture the main strategy of [LQ12] and explain at a conceptual level how
Condition (ND) leads to the signature uniqueness property.

Step one. Decompose the state space Rn into disjoint cubes of order ε with narrow
gaps δ (δ << ε). Label the cubes by a set L (L = Zn in [LQ12]).
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Step two. For each cube Hz (z ∈ L), construct a one-form φz supported in Hz

according to Condition (ND). For each word w = (z1, · · · , zm) over L, one can
define the associated extended signature

[φz1 , · · · , φzm ]0,T ,
∫
0<t1<···<tm<T

φz1(dXt1) · · ·φzm(dXtm)

along the path X. As a consequence of an algebraic property of the signature,
these extended signatures are all uniquely determined by the signature of X.
Step three. Due to Condition (ND), there exists a unique word w of maximal
length, with respect to which the extended signature is non-zero. This word
precisely corresponds to the discrete route of the path X in the given space dis-
cretisation. As a result, the signature of X uniquely determines its discrete route.
Step four. As we refine the discretisation (i.e. sending ε, δ → 0), the discrete
route converges to the original sample path X in a suitable sense. Therefore, the
signature uniquely determines the trajectory of X.

The rest of this section is devoted to the proof of Theorem 4.3.

Proof of Theorem 4.3: Verification of Condition (ND)

In the elliptic case, we can use Example 3.4 to explicitly construct one-forms
satisfying Condition (ND). According to Theorem 3.1, conditional on X entering
the cube H, the associated line integral

∫ T
0
φ(dXt) (for φ given by Example 3.4)

has a density. This clearly implies that its value is a.s. non-zero.
We now consider the step-two hypoelliptic case. Suppose that n = 3, d = 2

and V = {V1, V2, [V1, V2]} form a global frame field of R3. We use the method
of Corollary 3.15 to construct suitable one-forms. Recall from (3.15) that such
one-forms are given by

φ = c1ω
1 + c2ω

2 + (V1c2 − V2c1)ω3,

where {ωi} is the coframe of V and c1, c2 are arbitrary smooth functions supported
in the cube H. We want to choose φ with suppφ = H and dφ 6= 0 a.e. in H. Note
that dφ(V1, V2) = 0. Hence we have to look at dφ(Vi, [V1, V2]). Straightforward
calculation yields

dφ(Vi, [V1, V2]) = Vi(V1c2 − V2c1)− [V1, V2]ci − 〈φ, [Vi, [V1, V2]]〉, i = 1, 2.

We will set c2 = 0, so that

dφ(V2, [V1, V2]) = −V2(V2c1)−〈ω1, [V2, [V1, V2]]〉·c1+〈ω3, [V2, [V1, V2]]〉·V2c1. (4.2)
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In other words, we want to construct c1 with suppc1 = H, such that the above
expression is a.e. non-zero in H.

According to [CCL00, Chap. 1, Theorem 4.3], a non-degenerate vector field
locally generates coordinate curves. Since we will eventually refine the space
discretisation, we may assume without loss of generality that H is contained in a
coordinate chart [U ;x, y, z] of R3 where V2 = ∂x. To simplify notation, we further
assume that H is the unit cube

H = {(x, y, z) : max{|x|, |y|, |z|} < 1}

under the above coordinate system. We define

c1(x, y, z;λ) , hλ(x)η(y, z),

where λ > 0 is a parameter to be chosen later on,

hλ(x) ,

{
e
− λ

1−x2 , |x| < 1;

0, |x| > 1,

and η(y, z) is a given smooth function supported on H̄y,z , {(y, z) : max{|y|, |z|} 6
1} which is strictly positive in the interior. Under such choice of c1, the equation
(4.2) can be concisely written as

−dφ(V2, [V1, V2]) =
(
h′′λ(x) + f(x, y, z)h′λ(x) + g(x, y, z)hλ(x)

)
η(y, z),

where f, g are known C∞-functions. Our proof will be concluded from the follow-
ing lemma.

Lemma 4.5. There exists λ > 0, such that

Nλ , {(x, y, z) ∈ H : h′′λ(x) + f(x, y, z)h′λ(x) + g(x, y, z)hλ(x) = 0}

is a Lebesgue null set.

Remark 4.6. It will be clear from the proof below that Lemma 4.5 holds for all λ
outside a suitable null set of (0,∞). For our purpose, we only need one such λ.

Proof. Explicit calculation shows that

h′′λ(x) + f(x, y, z)h′λ(x) + g(x, y, z)hλ(x) =
hλ(x)

(1− x2)4
· Φλ(x, y, z),
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where

Φλ(x, y, z) = 4x2λ2 − 2(1− x2)(1 + 3x2 + x(1− x2)f)λ+ (1− x2)4g. (4.3)

Observe that Φλ(x, y, z) is a quadratic polynomial in λ. It is easy to see that
(x, y, z) ∈ Nλ ∩ {x 6= 0} if and only if

λ =
−p±

√
∆

8x2
and ∆ > 0,

where p,∆ are known C∞-functions onH that can be expressed explicitly in terms
of f, g (∆ is the discriminant of (4.3)).

We now consider the following three smooth functions:

ψ± ,
−p±

√
∆

8x2
, q ,

−p
8x2

,

where ψ± are defined on E , {∆ > 0} ∩ {x 6= 0} (could possibly be empty) and
q is defined on H ∩ {x 6= 0}. Recall that the critical set of a smooth function
F : U → R consists of those points in U at which ∇F = 0. The classical Sard’s
theorem (cf. [Mil97, Chap. 2]) asserts that the image of the critical set of a
smooth function is a Lebesgue null set. Let Y±, Z be the critical sets of ψ±, q
respectively. It follows that

C , ψ+(Y+) ∪ ψ−(Y−) ∪ q(Z)

is a Lebesgue null set in R. As a result, there exists at least one λ ∈ (0,∞) ∩ Cc.
We fix one such λ. Then each of ψ−1+ (λ), ψ−1− (λ), q−1(λ) is either empty or a
two-dimensional sub-manifold in H. The result thus follows from the observation
that

Nλ ∩ {x 6= 0} ⊆ ψ−1+ (λ) ∪ ψ−1− (λ) ∪ q−1(λ).

Note that the slice {x = 0} is a Lebesgue null set and has no effect on our
discussion.

If we choose λ as in Lemma 4.5, for the resulting one-form φ we have

dφ(V2, [V1, V2]) 6= 0

except on a low dimensional manifold which has zero Lebesgue measure. There-
fore, dφ 6= 0 a.e. inside the support of φ. The Condition (ND) is then a conse-
quence of Corollary 3.15.

35



References
[BG15] H. Boedihardjo and X. Geng. The uniqueness of signature problem

in the non-Markov setting. Stochastic Process. Appl. 125 (12) (2015):
4674-4701.

[BGLY16] H. Boedihardjo, X. Geng, T. Lyons and D. Yang. The signature of a
rough path: uniqueness. Adv. Math. 293 (2016): 720-737.

[CDL15] T. Cass, B.K. Driver and C. Litterer. Constrained rough paths. Proc.
Lond. Math. Soc. 111 (6) (2015): 1471–1518.

[CF10] T. Cass and P.K. Friz. Densities for rough differential equations under
Hörmander’s condition. Ann. of Math. 171 (2010): 2115–2141.

[CHLT15] T. Cass, M. Hairer, C. Litterer and S. Tindel. Smoothness of the den-
sity for solutions to Gaussian rough differential equations. Ann. Probab.
43 (1) (2015): 188–239.

[Che58] K. Chen. Integration of paths-a faithful representation of paths by non-
commutative formal power series. Trans. Amer. Math. Soc. 89 (1958):
395–407.

[Che73] K.T. Chen. Iterated integrals of differential forms and loop space ho-
mology. Ann. of Math. 97 (2) (1973): 217–246.

[CCL00] S.S. Chern, W.H. Chen and K.S. Lam. Lectures on differential geom-
etry. World Scientific, 2000.

[FH14] P.K. Friz and M. Hairer. A course on rough paths. Universitext, 2014.

[GOT21] X. Geng, C. Ouyang and S. Tindel. Precise local estimates for differen-
tial equations driven by fractional Brownian motion: hypoelliptic case,
preprint. To appear in Ann. Probab., 2021.

[GQ16] X. Geng and Z. Qian. On an inversion theorem for Stratonovich’s sig-
natures of multidimensional diffusion paths. Ann. Inst. Henri Poincaré
Probab. Stat. 52 (1) (2016): 429-447.

[HL10] B. Hambly and T. Lyons. Uniqueness for the signature of a path of
bounded variation and the reduced path group. Ann. of Math. 171 (1)
(2010): 109–167.

36



[Hor67] L. Hörmander. Hypoelliptic second order differential equations. Acta
Math. 119 (1967): 147–171.

[Hsu02] E. Hsu. Stochastic analysis on manifolds. Americal Mathematical So-
ciety, 2002.

[Ina14] Y. Inahama. Malliavin Differentiability of Solutions of Rough Differ-
ential Equations. J. Funct. Anal. 267 (2014): 1566–1584.

[Lev40] P. Lévy. Le mouvement brownien plan. Amer. J. Math. 62 (1940):
487–550.

[LQ12] Y. Le Jan and Z. Qian. Stratonovich’s signatures of Brownian motion
determine Brownian sample paths, Probab. Theory Relat. Fields 157
(2012): 440–454.

[LCL07] T.J. Lyons, M. Caruana and T. Lévy. Differential equations driven by
rough paths. Lecture Notes in Mathematics, Vol. 1908. Springer, Berlin,
2007.

[LQ02] T. Lyons and Z. Qian. System control and rough paths. Oxford Uni-
versity Press, 2002.

[Mil97] J.W. Milnor. Topology from the differentiable viewpoint. Princeton Uni-
versity Press, Princeton, 1997.

[Nua06] D. Nualart. The Malliavin calculus and related topics. Second Edition.
Springer-Verlag, 2006.

[Reu93] C. Reutenauer. Free Lie algebras. Clarendon Press, Oxford, 1993.

[Spi58] F. Spitzer. Some theorems concerning 2-dimensional Brownian motion.
Trans. Amer. Math. Soc. 87:187–197, 1958.

37


	Introduction and summary of main results
	Preliminary notions from rough path theory and differential geometry
	Pathwise differential calculus
	Some terminology from differential geometry

	Non-degeneracy criteria for stochastic line integrals
	Single line integrals
	The elliptic case
	The hypoelliptic case

	Iterated line integrals
	The case of disjoint supports
	The case of common support


	An application: signature uniqueness for RDEs

